Tag Archives: pulse

Sensors for counting objects

In order to count anything, we need to detect it first. This usually means some kind of sensor. The sensor used will typically provide a signal that our counter can read. Most such sensors actually function as a type of switch because their output terminals are closing a circuit on the counter electronics that causes a count to increment.

The simplest sensor used to count objects is an actual physical switch. Microswitches are switches with very sensitive contacts: a light touch is all it takes to register the presence of an object. Often microswitches are made with levers to reduce the force needed or to have a greater reach.



One common application for this type of switch is in coin counters for arcade games. The coin falls through a slot,  tripping the lever as it rolls past the switch. The main advantage of microswitches is their low cost and reliability. A disadvantage of this type of counting sensor is that physical contact with the switch is required and the force required to trip the sensor can affect the object you’re counting.

Another common sensor type used as input to counters or object detectors is a photoelectric switch. This optical sensor detects the interruption of a beam of light, often invisible infrared light. For example, to count boxes on a conveyor belt, an emitter, typically an infrared LED shines a focused beam of light across the belt. When the beam is reflected by an object passing by on the belt, the detector sees the returned light and closes a circuit and this sends a pulse to the counter module, updating the count of items going by.


Optical sensors have the advantage of not requiring contact with the switch, but may not work well in dirty or dusty environments where the optical signal may be blocked. Also, this type of sensor used for counting reflective items can be “fooled” by multiple reflections, causing an inaccurate count. In this case, a through-beam sensor, where the item must pass between the LED emitter and its detector, is often more reliable.

Magnetic sensors, as their name claims, detect magnetic fields. They are very useful when a non-contact sensor is needed in a dirty environment where light may be blocked.


Now that we’ve got sensors to detect the items, our PRT232 counter module is the ideal interface to do the actual counting. We can make modifications to the basic counter, such as a display, or special RS232 signal outputs,

Measuring water flow

A flow meter is the sensor that is used to measure water flow, or the flow of a low-viscosity fluid. There are many different types of flowmeters, but perhaps the most common are turbine or paddlewheel types. In these types of flow meters, a blade spins from the force of the moving fluid. The rotation is detected by a sensor that generates pulses that can be counted by a reader interface.

Older flow meters such as fuel pulsers used a rotating magnet that pulled a tiny reed switch causing the switch contacts to close. Every contact closure results in a pulse at the input of the reader, leading to these flowmeters being called pulsers. There are still thousands of these devices in use.

More modern pulsers and flow meters of all types like the one shown below generate their pulses electronically, often using Hall-Effect sensors that, again, respond to a moving magnet that is spun by a turbine or a paddlewheel.


Now that we have a flowmeter device that can give a pulse output rate that is proportional to the rate that the water or other liquid is flowing at, we need to measure it. The reading device is basically a counter that is calibrated to the pulse rate.

For example, a fuel flowmeter may output 10 pulses per gallon of fuel dispensed, or a flowmeter used for water provides 100 pulses per liter. The reader must understand this calibration so it can display the correct value.

In many cases, the need is to read the flow and record or process the data on a desktop computer. Serial interfaces, RS232 or RS485 and USB are common here. By using a serial port flow meter interface, getting the data into the PC for software processing is a simple task since all modern programming platforms provide some form of serial data communication. Once the data can be received by your software, then you may record it, create graphs, log flow over time, etc.

Cedar Lake Instruments’s PRT232 flow meter interface is a serial port counter flowmeter reader that can measure and record flow. It reads pulser type flow meters, and can switch solenoid valves or pumps to control fluid flow.